首页>>学校指南>朝阳区初一上学期期末考试数学试卷?朝阳区2021初一期末数学?

朝阳区初一上学期期末考试数学试卷?朝阳区2021初一期末数学?

admin 学校指南 2023-11-26 526

211升学网小编为您整理了“朝阳区初一上学期期末考试数学试卷?朝阳区2021初一期末数学?”

朝阳区初一上学期期末考试数学试卷?朝阳区2021初一期末数学?

1、初一数学上册期末试卷答案

寒窗苦读为前途,望子成龙父母情。放下包袱开动脑筋,勤于思考好好复习,祝你 七年级数学 期末考试取得好成绩,期待你的成功!我整理了关于初一数学上册期末试卷,希望对大家有帮助!

初一数学上册期末试题

第1卷(选择题共48分)

一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.甲、乙、丙三地的海拔高度分别为20m,-15m,-10m,那么更高的地方比更低的地方高

A.5m B.10m C.25m D.35m

2.下列说法错误的是

A.-2的相反数是2 B.3的倒数13

C.(一3)一(一5)=2 D.-11,0,4这三个数中最小的数是0

3.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学圮数法表示为

A.1.94×l010 B.0.194×1010 C.19.4×l09 D.1.94×109

4.如图是一个长方体包装盒,它的平面展开图是

5.下列运算中,正确的是

A.3a+2b=5ab B.2a3+3a2=5a5 C.5a2―4a2=1 D.3a2b―3ba2=0

6.在下列调查中,适宜采用普查的是

A.了解我省中学生的视力情况 B.了解九(1)班学生校服的尺码情况

C.检测一批电灯泡的使用寿命 D.调查某电视台《全民新闻》栏目的收视率

7.12点15分,钟表上时针与分针所夹角的度数为

A.90° B.67.5° C.82.5° D.60°

8.从一个n边形的一个顶点出发,分别连接该顶点与 其它 不相邻的各顶点,把这个多边形分 成6个三角形,则n的值是

A.6 B.7 C.8 D.9

9.若方程2x=8和方程ax+2x=4的解相同,则a的值为

A.1 B. -1 C.士1 D. 0

10.有理数a、b在数轴上的位置如图所示,则化简|a-b|十a的结果为

A.6 B.-b C.-2a-b D.2a-b

10题图

11.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调 多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是

A.96+x=13(72一x) B.13(96+x)=72一x

C.13(96-x)=72-x D.13×96+x=72一x

12.已知整数a1,a2,a3,a4……满足下列条件:a1=0,a2=-|a1+1| a3=-|a2+2|,

a4=-|a3+3|……依次类推,则a2017的值为

A.-1009 B.-1008 C.-2017 D.-2016

第Ⅱ卷(非选择题共102分)

二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)

13.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是_________________.

14.已知代数式6x-12与4+2x的值互为相反数,那么x的值等于_________

15.若(1―m)2+ | n+2| =0,则m+n的值为______________

16.如果单项式5am+1bn+5与a2m+1b2n+3是同类项,则m=_________,n=___________

17.34.37°=34°____′_____″.

18.平面上任意两点确定一条直线,任意三点最多可确定3条直线,若平面上任意n个点最多可确定28条直线,则n的值是________________________

三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)

19.(本小题满分6分)计算:

(1) -8×2-(-10) (2)一9÷3一(12一23)×12—32

20.(本小题满分6分)

己知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.

(1)画直线AD、直线BC相交于点O;

(2)画射线AB.

21.(本小题满分6分)

(1)化简:3x2-5x一6-7x2-6x+15

(2)先化简,再求值:-2x2-2[3y2-2(x2- y2)+6],其中x=-1,y=-2.

22.(本小题满分8分)解下列方程:

(1)4-x=7x+6

(2)2x-13-x+14=4

23.(本小题满分8分)

(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.

(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.

24.(本小题满分14分) 列方程解应用题

(1)在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?

(2)甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?

25.(本小题满分8分)

某商场今年1~5月每个月的销售总额如图甲,商场服装部每个月销售额占商场当月销售总额的百分比如图乙.

(1)来自商场财务部的数据 报告 表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图甲中的统计图补充完整;

(2)商场服装部5月份的销售额是多少万元?

(3)小刚观察图乙后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.

26.(本小题满分10分)请根据图中提供的信息,回答下列问题:

(1)-个水瓶与一个水杯分别是多少元?

(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由,

27.(本小题满分12分)

如图,数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒.

(l)点B表示的数为______,点P表示的数为_______(用含t的式子表示);

(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,H同时出发,问点P运动多少秒时追上点H?

初一数学上册期末试卷参考答案

一、选择题

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 D D A A D B C C B A B B

二、填空

13. 两点之间,线段最短

14. 1

15. -1

16. 0,2

17. 22,12

18. 8

三、解答题

19.解:

(1)-8×2 -(-10)

=-16+10 1分

=-6 2分

(2) -9÷3- (12-23)×12 -32;

=-3-(6-8) -9 3分

=-3-(-2) -9 4分

=-3+2-9 5分

=-10 6分

20.(1)画图正确 2分

结论 3分

(2)画图正确 5分

结论 6分

21.解:(1) 3x2-5x–6-7x2-6x +15

=(3-7)x2+(-5-6)x +(-6+15) 1分

= -4x2-11 x +9 2分

(2) -2x2-2[3y2-2(x2-y2)+6]

=-2x2-2[3y2-2x2 + 2y2+6] 3分

=-2x2-6y2 + 4x2 -4y2-12 4分

=2x2-10y2 -12 5分

当x=-1,y=-2时

原式=2×(-1)2-10×(-2)2-12

=2×1-10×4-12

=2-40-12

=-50 6分

22. 解:(1) 4-x=7x + 6

-x-7x = 6-4 1分

-8x=2 2分

x= 3分

(2)

4(2 x-1)-3(x+1) = 48 4分

8x-4-3x-3=48 5分

8 x-3 x=48+4+3 6分

5 x=55 7分

x= 11 8分

23(1)解:∵M是AC的中点,AC=6,

∴MC=12AC=6×12=3, 1分

又因为CN∶NB=1∶2,BC=15,

∴CN=15×13=5, 3分

∴MN=MC+CN=3+5=8,

∴MN的长为8 cm 4分

(2)解:∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,

∴∠BOE= ∠AOB, 5分

∵OF平分∠AOB,

∴∠BOF= ∠AOB, 6分

∴∠EOF=∠BOE-∠BOF= ∠AOF, 7分

∵∠EOF=20°,

∴∠AOB=120°. 8分

24.(1)解:设一共去了x个家长,则去了(15-x)个学生, 1分

根据题意得50x+50×0.6(15-x)=650, 3分

解得x=10, 4分

15-10=5, 5分

答:一共去了10个家长、5个学生. 6分

(2)解:设经过x小时,甲、乙两人相距32.5千米 7分

17.5x+15x = 65-32.5或 17.5x+15x = 65+32.5 11分

解方程(1)得x=1,解方程(2)得x=3 13分

答:经过1小时或3小时,甲、乙两人相距32.5千米. 14分

25解(1)410-100-90-65-80=75(万元) 1分

图略 2分

(2)∵商场5月份销售额为80万元,

∴5月份的销售额为80×16%=12.8(万元) 4分

(3)不同意他的看法. 6分

∵商场服装部4月份销售额为75×17%=12.75(万元), 7分

12.7512.8,

所以不同意他的看法 8分

26.解:(1)设一个水瓶是x元,则一个水杯是(48-x)元, 1分

由题意得3x+4(48-x)=152 3分

解得x=40 4分

48-x=8 5分

答:一个水瓶40元,一个水杯8元. 6分

(2)在甲商场购买:5×40×0.8+20×8×0.8=288(元); 7分

在乙商场购买:5×40+8×(20-5×2)=280(元), 8分

因为288280, 9分

所以在乙商场购买更合算. 10分

27. (1)-6,8-5t 4分

(之一空1分,第二空3分)

(2)设P运动x秒时追上点H, 5分

则3x+14=5x 9分

3x-5x=14,解得x=7 11分

答:点P运动7秒时追上点H. 12分

2、初一上学期数学期末试题

初一数学期末试卷

学年度之一学期期末考试初一数学试卷

时间:100分钟总分:150分之一卷(满分:100分)

一、填空题(每题2分,共30分)

1、4xyz是次单项式,系数

2、x2-2xy+y2是次多项式

3、3x2-x+的一次项系数是,常数项是

4、如果x+y=1,则x=(用y表示x)

5、若a表示正数,则-a表示(填正数、负数或零)

6、把ax4+ax+bx2按x的升幂排列得

7、合并同类项:5x3-6xy2-7x3+3xy2=

8、去括号:-(a+b)+(c-d)=

9、如果2x=5-5x,则2x+=5

10、当n=时,单项式5a2bn与3a2b4是同类项

11、要使等式=变成x=y,等式两边须同时乘以

12、用等号表示关系的式子叫做等式。

13、根据条件列方程:x的2倍加上5等于x的7倍减去2:

14、含盐15%的盐水a千克中,含盐克(用代数式表示)

15、甲、乙骑自行车同时从相距70千米的两地相向而行,已知甲每小早行驶20千米,乙每小时行驶15千米,则他们小时后相遇。

二、选择(有且只有一个正确答案,每题3分共30分)

16、下列各式中,不是代数式的是()

A、5aB、C、6D、x=3

17、多项式2x2y-3x3y2+4x2-81的次数是()

A、12B、4C、5D、3

18、下列各式中,是多项式的是()

A、2+3B、a=bC、a+bD、5x2

19、下列等式中,属于方程的是()

A、5-3=2B、4x+5=1C、4×4=16D、a+b=b+a

20、下列方程的解法正确的是()

A、解方程:=5B、解方程:2x-1=-x+5

解:=5=x=10解:2x-x=5-1

∴x=4

C、解方程:-y=1D、解方程:-=1

解:-y=1解:2x-3x+1=6

y=1-x=5

∴y=∴x=-5

22、关于x的方程x+a=4的解是3,则a的值为()

A、1B、-1C、2D、-2

23、下面的移项中,正确的是()

A、从5x=4x+5得5x+4x=5B、从x+6=13得x=13-6

C、从3x-1=2x得3x-2x=-1D、从5x+6=7x-1得5x+7x=6-1

24、a-2b-3c+d=a-(),括号内所填各项正确的是()

A、-2b+3c-dB、2b+3c-dC、2b-3c-dD、-2b-3c+d

25、代数式1-2(-x)的值等于2,则x的值等于()

A、-BC、-1D、1

三、解答题(每小题5分,共25分)

26、解方程5x-4=2x-1

27、合并同类项:5a-3x+4a+8x-5ax-2x

28、解方程:+1=3x

29、解方程:-=1

30、化简3a-[6a+(4a-5b)-10b]

四、(7分)

31、某工程,甲独立做10天完成,乙独立做15天完成,问两人合做需要多少天完成?

五、(8分)

32、化简求值

5a2+(-2a2)-8a3+6a2-a3其中a=-1

第二卷(满分50分)

六、填空(每题3分,共15分)

33、+2x2+bx-9=x3-6

34、若∣a+3∣+(b-1)2=0,则-b=

35、x=-1是方程x+1=-x+a的解,则1-a-a2=

36、代数式-a与-1的值相等,则a=

37、已知方程∣2x+3∣=1,则x=

七、(6分)

38、解方程[(y-3)-3]-3=0

八、(7分)

39、化简求值

6(x-y)n-2(x+y)3n-2(x-y)n+7(x+y)3n-(x+y)2m+5(x+y)3n-4(x-y)n,其中x=0.84,y=0.16

九、列方程解应用题(7分)

40、某车间女工占全车间人数的,又调来4名女工后,女工占全车间人数的,问原来车间共有多少人?

十(7分)

41、一个3位数,十位上的数是a,百位上的数是十位上数字的2倍,个位上数字比百位上数字小2

1)用代数式表示这个三位数

2)当a=4时,求这个三位数

十一、列方程解应用题(8分)

42、有一艘轮船在A、B两地间航行,顺流而下需3小时,逆流而上需5小时。已知水流的速度是每小时2千米,求A、B两地的距离。

3、七年级上册数学期末考试试题两套

人生无时无刻不处于考试,在学习的考试成绩由分数来证明自己,下面给大家带来一些关于七年级上册数学期末考试试题两套,希望对大家有所帮助。

七年级上册数学期末考试试题两套1

、选择题(共10小题,每小题3分,共30分)

1.-(-3)的绝对值是()

A.-3 B.13 C.-13 D.3

2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害.将数据80亿用科学记数法表示为()

A.8×108 B.8×109 C.0.8×109 D.0.8×1010

3.下列计算正确的个数是()

①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.

A.1个 B.2个 C.3个 D.0个

4.一个几何体的表面展开图如图所示,则这个几何体是()

A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱

5.已知代数式2a2-b=7,则-4a2+2b+10的值是()

A.7 B.4 C.-4 D.-7

6.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()

A.0 B.2 C.0或2 D.-2

7.某商店换季促销,将一件标价为240元的T恤8折售出,获利20%,则这件T恤的成本为()

A.144元 B.160元 C.192元 D.200元

8.如图,数轴上A、B、C三点所表示的数分别是a、6、c.已知AB=8,a+c=0,且c是关于x的方程(m-4)x+16=0的一个解,则m的值为()

A.-4 B.2 C.4 D.6

9.12点15分,钟表的时针与分针所夹的小于平角的角的度数为()

A.60° B.67.5° C.82.5° D.90°

10.如图是某月的月历表,在此月历表上可以用一个长方形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈出这张月历表上的9个数,则圈出的9个数的和不可能为下列数中的()

A.81 B.90 C.108 D.216

二、填空题(共6小题,每小题3分,共18分)

11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是W.

第11题图 第12题图

12.如图,数轴上A表示的数为1,B表示的数为-3,则线段AB中点表示的数为.

13.已知关于x的多项式(m-1)x4-xn+2x-5是三次三项式,则(m+1)n的值为.

14.若方程x+5=7-2(x-2)的解也是方程6x+3k=14的解,则常数k=.

15.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.

16.有一列数:a1,a2,a3,a4 ,…,an-1,an,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,….当an=2021时,n的值为.

三、解答题(共8小题,共72分)

17.(8分)计算:

(1)(-1)2×5+(-2)3÷4; (2)58-23×24+14÷-123+|-22|.

18.(8分)解方程:

(1)x-12(3x-2)=2(5-x); (2)x+24-1=2x-36.

19.(8分)已知关于x的多项式mx2-mx-2与3x2+mx+m的和是单项式,求代数式m2-2m+1的值.

20.(8分)如图所示是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.

(1)填空:a=,b=,c=;

(2)先化简,再求值:5a2b-[2a2b-3(2abc-a2b)]+4abc.

21.(8分)如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.

22.(10分)台湾是中国领土不可分割的一部分,两岸在政治、经济、 文化 等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?

23.(10分)某班准备买一些 乒乓球 和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒),现只到一家商店购买,问:

(1)当购买乒乓球多少盒时,两种优惠办法付款一样?

(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?

24.(12分)如图,已知点O表示原点,点A在数轴上表示的数为a,点B表示的数为b,且a、b满足|a+3|+(b-2)2=0.

(1)求点A、B所表示的数;

(2)点C在数轴上表示的数为x,且x是方程2x+1=12x-8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,说明理由.

参考答案与解析

1.D 2.B 3.B 4.A 5.C 6.A 7.B 8.A 9.C 10.D

11.55° 12.-1 13.8 14.23 15.25 16.336

17.解:(1)原式=3.(4分)(2)原式=19.(8分)

18.解:(1)x=6.(4分)(2)x=0.(8分)

19.解:mx2-mx-2+3x2+mx+m=(m+3)x2+m-2.(2分)因为其和为单项式,所以m+3=0或m-2=0,即m=-3或m=2.(4分)当m=-3时,原式=(-3)2-2×(-3)+1=16;(6分)当m=2时,原式=22-2×2+1=1.(8分)

20.解:(1)1 -2 -3(3分)

(2)5a2b-[2a2b-3(2abc-a2b)]+4abc=5a2b-(2a2b-6abc+3a2b)+4abc=5a2b-2a2b+6abc-3a2b+4abc=10abc.(6分)当a=1,b=-2,c=-3时,原式=10×1×(-2)×(-3)=10×6=60.(8分)

21.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(2分)又BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(4分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(6分)所以x=14,所以∠ABC=7x°=98°.(8分)

22.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有12x-25万件藏品.(2分)根据题意列方程得x+12x-25=245,(5分)解得x=180.(8分)

答:北京故宫博物院约有180万件藏品.(10分)

23.解:(1)设购买x盒乒乓球时,两种优惠办法付款一样.根据题意有30×5+(x-5)×5=(30×5+5x)×0.9,解得x=20.

答:购买20盒乒乓球时,两种优惠办法付款一样.(4分)

(2)当购买15盒时,甲店需付款30×5+(15-5)×5=200(元),乙店需付款 (30×5+15×5)×0.9=202.5(元).因为200202.5,所以去甲店合算.(7分)当购买30盒时,甲店需付款30×5+(30-5)×5=275(元),乙店需付款(30×5+30×5)×0.9=270(元).因为275270,所以去乙店合算.(10分)

24.解:(1)因为|a+3|+(b-2)2=0,所以a+3=0,b-2=0,解得a=-3,b=2,即点A表示的数是-3,点B表示的数是2.(4分)

(2)①解2x+1=12x-8得,x=-6,所以BC=2-(-6)=8,即线段BC的长为8.(8分)

②存在点P,使PA+PB=BC.设点P表示的数为m,则|m-(-3)|+|m-2|=8,所以|m+3|+|m-2|=8.(10分)当m2时,解得m=3.5;当-3m2时,无解;当x-3时,解得m=-4.5.综上所述,点p对应的数是3.5或-4.5.(12分) p=""

七年级上册数学期末考试试题两套2

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)

1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作()

A.-2 B.-4 C.-2m D.-4m

2.下列式子计算正确的个数有()

①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.

A.1个 B.2个 C.3个 D.0个

3.一个几何体的表面展开图如图所示,则这个几何体是()

A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱

4.已知2016xn+7y与-2017x2m+3y是同类项,则(2m-n)2的值是()

A.16 B.4048

C.-4048 D.5

5.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为()

A.144元 B.160元

C.192元 D.200元

6.如图,用同样规格的黑白两种正方形瓷砖铺设地面,观察图形并猜想,当黑色瓷砖为28块时,白色瓷砖的块数为()

A.27块 B.28块

C.33块 D.35块

二、填空题(本大题共6小题,每小题3分,共18分)

7.-12的倒数是________.

8.如图,已知∠AOB=90°,∠1=35°,则∠2的度数是________.

9.若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a=________,化简结果为____________.

10.若方程6x+3=0与关于y的方程3y+m=15的解互为相反数,则m=________.

11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.

12.若线段AB=6cm,M是线段AB的三等分点,N是线段AM的中点,则线段MN的长为________.

三、(本大题共5小题,每小题6分,共30分)

13.(1)计算:13.1+1.6-(-1.9)+(-6.6);

(2)化简:5xy-x2-xy+3x2-2x2.

14.计算:

(1)(-1)2×5+(-2)3÷4;

(2)58-23×24+14÷-123+|-22|.

15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2.

16.解方程:

(1)x-12(3x-2)=2(5-x);

(2)x+24-1=2x-36.

17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.

四、(本大题共3小题,每小题8分,共24分)

18.用“⊕”和“⊙”定义两种新运算,对于任意的有理数a,b都有a⊕b=a+2b,a⊙b=a×b-2.

(1)求(1⊕2)⊙3的值;

(2)当x为有理数时,化简(x⊕2)-(x⊙3).

19.列方程解应用题:2018年元月初,我国中东部地区普降 大雪 ,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士.现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调去多少名武警部队战士?

20.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.

(1)点A所对应的数是________,点B所对应的数是________;

(2)若已知在数轴上的点E从点A处出发向左运动,速度为2个单位长度/秒,同时点F从点B处出发向左运动,速度为4个单位长度/秒,在点C处点F追上了点E,求点C所对应的数.

五、(本大题共2小题,每小题9分,共18分)

21.已知m,n满足(m-6)2+|n-2|=0.

(1)求m,n的值;

(2)已知线段AB=m,在直线AB上取一点P,使AP=nPB,Q为PB的中点,求线段AQ的长.

22.某大型超市“ 重阳节 ”期间感恩大回馈:购物不超过300元没有优惠;超过300元,而不超过600元优惠20%;超过600元的,其中600元按8折优惠,超过部分按7折优惠.小颖的妈妈两次购物分别用了210元和550元,问:

(1)小颖的妈妈两次购买的物品原价各是多少钱?

(2)在这次活动中她节省了多少钱?

(3)小颖的妈妈一次性购买这些物品,与分开购买相比是节省还是亏损?

六、(本大题共12分)

23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图①,若∠AOC=30°,求∠DOE的度数;

(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);

(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.

①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;

②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.

参考答案与解析

1.C 2.B 3.A

4.A 解析:由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.

5.B 6.D

7.-2 8.55° 9.2 -x2-7y2

10.272 11.25 12.1cm或2cm

13.解:(1)原式=13.1+1.9+1.6-6.6=10.(3分)

(2)原式=5xy-xy=4xy.(6分)

14.解:(1)原式=3.(3分)(2)原式=19.(6分)

15.解:原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)

16.解:(1)x=6.(3分)(2)x=0.(6分)

17.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)

18.解:(1)∵1⊕2=1+2×2=5,(2分)∴(1⊕2)⊙3=5⊙3=5×3-2=13.(4分)

(2)∵x⊕2=x+2×2=x+4,x⊙3=3x-2,(6分)∴(x⊕2)-(x⊙3)=(x+4)-(3x-2)=-2x+6.(8分)

19.解:设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,(3分)解得x=140,∴200-x=60.(7分)

答:应往甲处调去140名,往乙处调去60名武警部队战士.(8分)

20.解:(1)-5 27(3分)

(2)设经过x秒点F追上点E,根据题意得2x+32=4x,解得x=16.(6分)则点C所对应的数为-5-2×16=-37.(8分)

21.解:(1)由题意得(m-6)2=0,|n-2|=0,所以m=6,n=2.(3分)

(2)当点P在线段AB上时,AP=2PB,所以AP=4,PB=2.而Q为PB的中点,所以PQ=1,故AQ=AP+PQ=5;(5分)当点P在线段AB的延长线上时,AP-PB=AB,即2PB-PB=6,所以PB=6.而Q为PB的中点,所以BQ=3,AQ=AB+BQ=6+3=9.(8分)故线段AQ的长为5或9.(9分)

22.解:(1)∵300×(1-20%)=240(元),600×(1-20%)=480(元)550元,∴小颖妈妈之一次购买的物品原价是210元,第二次购买物品原价大于600元.(2分)设小颖妈妈第二次购买的物品原价是x元.600×80%+70%(x-600)=550,解得x=700,∴小颖妈妈第二次购买的物品原价是700元.(4分)

(2)由题意得700-550=150(元).故在这次活动中她节省了150元钱.(6分)

(3)由题意得210+700=910(元),600×80%+70%×(910-600)=697(元).由210+550=760(元),697760,故与分开购买相比更节省.(9分)

23.解:(1)由题意得∠BOC=180°-∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD-∠COE=∠COD-12 ∠BOC=90°-12×150°=15°.(3分)

(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.

(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)

②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF=2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)

七年级上册数学期末考试试题两套相关 文章 :

★ 人教版七年级数学上册期末试卷及答案2017年

★ 小升初数学试卷两套试题

★ 人教版七年级数学上册期末考试试卷

★ 七年级数学期末考试试卷分析

★ 七年级数学上学期期末复习训练题

★ 初一年级上册数学的21个热门知识点

★ 人教版七年级数学期末考试试卷

★ 七年级数学期末考试卷

★ 初一数学上册期末考试预测题及答案

★ 初一上册常考的数学习题

4、急求初一上学期期末试题[人教版数学,英语,地理,生物,历史均可]

初中英语合集百度网盘下载

链接:

?pwd=1234 提取码:1234

简介:初中英语优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

5、七年级上册数学期末试卷2021~2022

七年级上册数学期末试卷2021~2022如下:

数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

相反数的概念:只有符号不同的两个数叫做互为相反数.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同零相乘,都得0。多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负。

6、初一数学上学期期末试卷

初一的数学是所有学科中比较难的一门学科,在即将到来的期末考试,同学们又要如何准备期末试卷来复习呢?下面是我为大家带来的关于初一数学上学期期末试卷,希望会给大家带来帮助。

初一数学上学期期末试卷:

一.选择题(共8小题,每题3分)

1.(2014?钦州)如果收入80元记作+80元,那么支出20元记作()

A. +20元 B. ﹣20元 C. +100元 D. ﹣100元

考点: 正数和负数.

分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.

解答: 解:“正”和“负”相对,

所以如果+80元表示收入80元,

那么支出20元表示为﹣20元.

故选:B.

点评: 此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.

2.(2015?深圳模拟)北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为()

A. 54×106 B. 55×106 C. 5.484×107 D. 5.5×107

考点: 科学记数法与有效数字.

分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数.确定n的值是易错点,由于54840000有8位,所以可以确定n=8﹣1=7.

因为54840000的十万位上的数字是8,所以用“五入”法.

用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.

解答: 解:54840000=5.484×107≈5.5×107.

故选D.

点评: 本题考查科学记数法的表示 以及掌握利用“四舍五入法”,求近似数的 .

3.(2014?台湾)数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()

A. B. C. D.

考点: 数轴;绝对值.

分析: 从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.

解答: 解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,

∴b=1,

∵|c﹣1|﹣|a﹣1|=|a﹣c|.

∴|c﹣b|﹣|a﹣b|=|a﹣c|.

A、b

B、c

C、a

D、b

故选:A.

点评: 本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.

4.(2014?日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年之一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比之一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()

A. (1﹣15%)(1+20%)a元 B. (1﹣15%)20%a元

C. (1+15%)(1﹣20%)a元 D. (1+20%)15%a元

考点: 列代数式.

专题: 销售问题.

分析: 由题意可知:2014年之一季度出栏价格为2013年底的生猪出栏价格的(1﹣15%),第二季度平均价格每千克是之一季度的(1+20%),由此列出代数式即可.

解答: 解:第三季度初这家养殖场的生猪出栏价格是每千克(1﹣15%)(1+20%)a元.

故选:A.

点评: 此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.

5.(2014?烟台)按如图的运算程序,能使输出结果为3的x,y的值是()

A. x=5,y=﹣2 B. x=3,y=﹣3 C. x=﹣4,y=2 D. x=﹣3,y=﹣9

考点: 代数式求值;二元一次方程的解.

专题: 计算题.

分析: 根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.

解答: 解:由题意得,2x﹣y=3,

A、x=5时,y=7,故A选项错误;

B、x=3时,y=3,故B选项错误;

C、x=﹣4时,y=﹣11,故C选项错误;

D、x=﹣3时,y=﹣9,故D选项正确.

故选:D.

点评: 本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.

6.(2014?安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()

A. ﹣6 B. 6 C. ﹣2或6 D. ﹣2或30

考点: 代数式求值.

专题: 整体思想.

分析: 方程两边同时乘以2,再化出2x2﹣4x求值.

解答: 解:x2﹣2x﹣3=0

2×(x2﹣2x﹣3)=0

2×(x2﹣2x)﹣6=0

2x2﹣4x=6

故选:B.

点评: 本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.

7.(2014?常州)下列立体图形中,侧面展开图是扇形的是()

A. B. C. D.

考点: 几何体的展开图.

分析: 圆锥的侧面展开图是扇形.

解答: 解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.

故选:B.

点评: 解题时勿忘记圆锥的特征及圆锥展开图的情形.

8.(2011?黄冈模拟)下列图形中,是正方体表面展开图的是()

A. B. C. D.

考点: 几何体的展开图.

分析: 利用正方体及其表面展开图的特点解题.

解答: 解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后之一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.

点评: 只要有“田”字格的展开图都不是正方体的表面展开图.

二.填空题(共6小题,每题3分)

9.(2014?湘西州)如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= 20° 度.

考点: 对顶角、邻补角;角平分线的定义.

分析: 由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE即可.

解答: 解:∵∠AOC=40°,

∴∠DOB=∠AOC=40°,

∵OE平分∠DOB,

∴∠DOE= ∠BOD=20°,

故答案为:20°.

点评: 本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.

10.(2014?连云港)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= 31° .

考点: 平行线的性质.

分析: 根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2= ∠EFD.

解答: 解:∵AB∥CD,

∴∠EFD=∠1=62°,

∵FG平分∠EFD,

∴∠2= ∠EFD= ×62°=31°.

故答案为:31°.

点评: 本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.

11.(2014?温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.

考点: 平行线的性质.

专题: 计算题.

分析: 根据平行线的性质求出∠C,根据三角形外角性质求出即可.

解答: 解:∵AB∥CD,∠1=45°,

∴∠C=∠1=45°,

∵∠2=35°,

∴∠3=∠∠2+∠C=35°+45°=80°,

故答案为:80.

点评: 本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.

12.(2014?齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 9 .

考点: 代数式求值.

专题: 整体思想.

分析: 把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.

解答: 解:∵x2﹣2x=5,

∴2x2﹣4x﹣1

=2(x2﹣2x)﹣1,

=2×5﹣1,

=10﹣1,

=9.

故答案为:9.

点评: 本题考查了代数式求值,整体思想的利用是解题的关键.

13.(2014?盐城)“x的2倍与5的和”用代数式表示为 2x+5 .

考点: 列代数式.

分析: 首先表示x的2倍为2x,再表示“与5的和”为2x+5.

解答: 解:由题意得:2x+5,

故答案为:2x+5.

点评: 此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.

14.(2014?怀化)计算:(﹣1)2014= 1 .

考点: 有理数的乘方.

分析: 根据(﹣1)的偶数次幂等于1解答.

解答: 解:(﹣1)2014=1.

故答案为:1.

点评: 本题考查了有理数的乘方,﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.

三.解答题(共11小题)

15.(2005?宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣ ).

考点: 有理数的混合运算.

分析: 含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.

解答: 解:原式=4﹣7+3+1=1.

点评: 注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.

(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.

16.(2014秋?吉林校级期末)计算:(﹣ ﹣ + )÷(﹣ )

考点: 有理数的除法.

分析: 将除法变为乘法,再根据乘法分配律计算即可求解.

解答: 解:原式=(﹣ ﹣ + )×(﹣36)

=﹣ ×(﹣36)﹣ ×(﹣36)+ ×(﹣36)

=27+20﹣21

=26.

点评: 此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.

17.(2014?石景山区二模)已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.

考点: 代数式求值.

专题: 整体思想.

分析: 把x=1代入代数式求出a、b的关系式,再把x=2代入代数式整理即可得解.

解答: 解:将x=1代入2ax2+bx=﹣2中,

得2a+b=﹣2,

当x=2时,ax2+bx=4a+2b,

=2(2a+b),

=2×(﹣2),

=﹣4.

点评: 本题考查了代数式求值,整体思想的利用是解题的关键.

18.(2014秋?吉林校级期末)出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:

(1)小张在送第几位乘客时行车里程最远?

(2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?

考点: 正数和负数.

分析: (1)根据绝对值的性质,可得行车距离,根据绝对值的大小,可得答案;

(2)根据行车的总路程乘以单位耗油量,可得答案.

解答: 解:(1)∵|﹣22||15||﹣13||12||10||6||﹣4|,

∴小张在送第七位乘客时行车里程最远;

(2)由题意,得

(12+|﹣4|+15+|﹣13|+10+6+|﹣22|)×0.1=82×0.1=8.2(升),

答:这天上午汽车共耗油8.2升.

点评: 本题考查了正数和负数,利用了绝对值的意义,有理数的乘法.

19.(2005?广东)如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.

考点: 平行线的性质;对顶角、邻补角.

专题: 计算题.

分析: 根据平行线的性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠2=180°﹣2∠1,这样就可求出∠2的度数.

解答: 解:∵AB∥CD,

∴∠1=∠AEG.

∵EG平分∠AEF,

∴∠1=∠GEF,∠AEF=2∠1.

又∵∠AEF+∠2=180°,

∴∠2=180°﹣2∠1=180°﹣80°=100°.

点评: 两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.

20.(2014秋?吉林校级期末)已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.

考点: 对顶角、邻补角;角平分线的定义.

分析: 根据角平分线的定义可得∠AOF=∠EOF,然后解答即可.

解答: 解:∵OF平分∠AOE,

∴∠AOF=∠EOF,

∴∠AOF+∠COF=∠EOF+∠COF=∠COE=90°.

点评: 本题考查了角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.

21.(2014秋?吉林校级期末)如图,已知OF⊥OC,∠BOC:∠COD:∠DOF=1:2:3,求∠AOC的度数.

考点: 垂线;角的计算.

分析: 根据垂线的定义,可得∠COF的度数,根据按比例分配,可得∠COD的度数,根据比例的性质,可得∠BOC的度数,根据邻补角的性质,可得答案.

解答: 解:由垂直的定义,得

∠COF=90°,

按比例分配,得

∠COD=90°× =36°.

∠BOC:∠COD=1:2,

即∠BOC:36°=1:2,由比例的性质,得

∠BOC=18°,

由邻补角的性质,得

∠AOC=180°﹣∠BOC=180°﹣18°=162°.

点评: 本题考查了垂线,利用了垂线的定义,按比例分配,邻补角的性质.

22.(2014秋?吉林校级期末)∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?

考点: 垂线;角平分线的定义.

分析: 根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.

解答: 解:由AO⊥BO,得∠AOB=90°,

由角的和差,得∠AOC=∠AOB+∠BOC=150°.

由OE平分∠AOC,OF平分∠BOC,得∠COE= ∠AOC= ×150°=75°,∠COF= ∠BOC= ×60°=30°.

由角的和差,得∠EOF=∠COE﹣∠COF=75°﹣30°=45°.

点评: 本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差.

23.(2012?锦州二模) 如图,直线AB∥CD,∠A=100°,∠C=75°,则∠E等于 25 °.

考点: 平行线的性质.

专题: 探究型.

分析: 先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.

解答: 解:∵直线AB∥CD,∠A=100°,

∴∠EFD=∠A=100°,

∵∠EFD是△CEF的外角,

∴∠E=∠EFD﹣∠C=100°﹣75°=25°.

故答案为:25.

点评: 本题考查的是平行线的性质,即两直线平行,同位角相等.

24.(2005?安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.

考点: 平行线的性质;角平分线的定义;对顶角、邻补角.

专题: 计算题.

分析: 根据角平分线的定义,两直线平行内错角相等的性质解答即可.

解答: 解:∵∠EMB=50°,

∴∠BMF=180°﹣∠EMB=130°.

∵MG平分∠BMF,

∴∠BMG= ∠BMF=65°,

∵AB∥CD,

∴∠1=∠BMG=65°.

点评: 主要考查了角平分线的定义及平行线的性质,比较简单.

25.(2014秋?吉林校级期末)将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.

(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);

(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.

考点: 平行线的判定与性质;角的计算.

分析: (1)①当∠AOC=45°时,根据条件可求得∠COB=45°可说明CO平分∠AOB;②设CD、OB交于点E,则可知OE=CE,可证得OB⊥CD,结合条件可证明OA∥CD;

(2)由平行可得到∠D=∠BOD=45°,则可得到∠AOD=45°,可得到结论.

解答: 解:(1)①∵∠AOB=90°,∠AOC=45°,

∴∠COB=90°﹣45°=45°,

∴∠AOC=∠COB,

即OC平分∠AOB;

②如图,设CD、OB交于点E,

∵∠C=45°,

∴∠C=∠COB,

∴∠CEO=90°,

∵∠AOB=90°,

∴∠AOB+∠OEC=180°,

∴AO∥CD;

(2)∠AOC=45°,理由如下:

∵CD∥OB,

∴∠DOB=∠D=45°,

∴∠AOD=90°﹣∠DOB=45°,

∴∠AOC=90°﹣∠AOD=45°.

以上就是小编为您精心收集整理的“朝阳区初一上学期期末考试数学试卷?朝阳区2021初一期末数学?”的全部内容了,仅供参考,希望能帮助到大家。
标签: