首页>>学校指南>初一一元一次判断题?初一数学一元一次方程单元测试?

初一一元一次判断题?初一数学一元一次方程单元测试?

admin 学校指南 2023-11-26 375

211升学网小编为您整理了“初一一元一次判断题?初一数学一元一次方程单元测试?”

初一一元一次判断题?初一数学一元一次方程单元测试?

1、初一的一元一次解方程的计算题谁有?越多越好!!

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x2=7;( ) ② ( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

解:3y-y=3+4,2y=7,y= ;( )

②解方程:0.4x-3=0.1x+2

解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )

③解方程

解:5x+15-2x-2=10,3x=-3,x=-1;

④解方程

解:2x-4+5-5x=-1,-3x=-2,x= .( )

二、填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .

(2)关于x的方程ax=3的解是自然数,则整数a的值为: .

(3)方程5x-2(x-1)=17 的解是 .

(4)x=2是方程2x-3=m- 的解,则m= .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .

(6)当y= 时,代数式5y+6与3y-2互为相反数.

(7)当m= 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .

三.选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3( x-1)=12

B.去括号,得x- =3

C.两边同除以 ,得 x-1=4

D.整理,得

(3)方程2- 去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式 比 大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1是方程( )的解.

A.-

B.

C.2{3[4(5x-1)-8]-2}=8

D.4x+ =6x+

四、解下列方程:

(1)7(2x-1)-3(4x-1)=4(3x+2)-1;

(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);

(3) [ ( )-4 ]=x+2;

(4)

(5)

(6)

(7)

(8)20%+(1-20%)(320-x)=320×40%

五、解答下列各题:

(1)x等于什么数时,代数式 的值相等?

(2)y等于什么数时,代数式 的值比代数式 的值少3?

(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?

(4)解下列关于x的方程:

①ax+b=bx+a;(a≠b);

② .

第四章 一元一次方程的应用(习题课)

一、目的要求

1.通过练习巩固学生已学过的列出一元一次方程解应用题的5个步骤和有关注意事项,特别是提高寻找相等关系,并把相等关系正确地表示成方程的能力。

2.通过练习使学生进一步领会采用代数 解应用题的优越性。

二、内容分析

到现在为止,学生已经接触了列出一元一次方程解以下四类应用题:

1.和倍、差倍问题;

2.形积变化问题;

3.相遇问题;

4.追及问题,它与相遇问题统称行程问题(行程问题中还有一种“相背而行”的情况,我们把“相背而行”看作与“相向而行”在数学上同等,所以在教科书中没有提及。当两个沿着环形跑道运动时,“相向”与“相背”明显是一回事)。

通过这四类应用题,学生学习了列出一元一次方程应用题的 (含五个步骤),了解了代数 与算术 的差别,并初步体会到代数 由于使已知数、未知数处于平等地位,方程很容易列出,比算术解法优越(当然这不是绝对的),存在着算术解法比代数解法简捷的例子)。

本节课要复习列出一元一次方程解应用题的五个步骤以及前两类问题,并适当予以拓伸。

三、教学过程

复习提问:

1.列出一元一次方程解应用题的五个步骤分别是什么?其中关键步骤是哪一个?

2.什么叫做“弄清题意”?(“弄清题意”就是搞清楚题目的意思,弄懂每句话的意义,能够说出知的是什么,要求出的是什么。)

3.在把相等关系表示成方程时,要注意些什么?(把相等关系的左边、右边都表示成代数式,并且要使用统一的计量单位。)

引入新课:今天我们要通过做一些练习来巩固已经学过的列出一元一次方程解应用题的知识。

课堂练习:

1.某农具厂计划在6天内生产某种新式农具144件,之一天已生产了19件,后5天平均每天应当生产多少件?

提示:设后5天平均每天应当生产x件,根据题意,得

5x+19=144.

解得经x=25。

2.某厂前年年底还有一批职工住在平房里,去年这些职工中有25%搬进了新楼房,到年底这家工厂还有600名职工住在平房里,前年年底这家工厂有多少名职工住在平房里?

提示:设前年年底这家工厂还有x名职工住在平房里,根据题意,得

x-25%·x=600。

解得x=800。

3.在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。)

提示:设长方体容器的高为xcm,根据题意,得

3.14×720=100x。

解得 x=22.608。

4.请同学们根据一元一次方程

编一道应用题。

提示:可从编某数问题着手,先说“某数加上它的20%等于720,求某数”。然后把某数赋以实际意义,例如“初一(1)班张小红到去年年底已经在银行储蓄720元,比前年年底又增加了20%。张小红到前年年底在储蓄多少元?

课堂小结:在这节课里,我们复习了列出一元一次方程解应用题的五个步骤和教科书第212页~216页上的内容,请同学们回家后把教科书上这5页再认真阅读一遍。

四、课外作业

教科书第242页复习题四A组的第5,6题。

补充题:

1.两数的和为27.14,差为2.22,求这两个数。(答案:14.68与12.46。)

提示:设小数为x,则大数为x+2.22。

2.两个正数的比为5:3,差为6,求这两个数。(答案:15与9。)

3.某工厂生产一种产品,经过技术革新后,每件产品的成本是37.4元,比革新前降低了15%。革新前每件产品的成本是多少元?(答案:44元)

4.在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。已知圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?(答案:2:1。)

;cl=3

2、急求初一一元一次方程

一元一次方程:

1. 2(x-2)-3(4x-1)=9(1-x)

2. 11x+64-2x=100-9x

3. 15-(8-5x)=7x+(4-3x)

4. 3(x-7)-2[9-4(2-x)]=22

5. 3/2[2/3(1/4x-1)-2]-x=2

6. 2(x-2)+2=x+1

7. 0.4(x-0.2)+1.5=0.7x-0.38

8. 30x-10(10-x)=100

9. 4(x+2)=5(x-2)

10. 120-4(x+5)=25

11. 15x+863-65x=54

12. 12.3(x-2)+1=x-(2x-1)

13. 11x+64-2x=100-9x

14. 14.59+x-25.31=0

15. x-48.32+78.51=80

16. 820-16x=45.5×8

17. (x-6)×7=2x

18. 3x+x=18

19. 0.8+3.2=7.2

20. 12.5-3x=6.5

21. 1.2(x-0.64)=0.54

22. x+12.5=3.5x

23. 8x-22.8=1.2

24. 1\ 50x+10=60

25. 2\ 60x-30=20

26. 3\ 3^20x+50=110

27. 4\ 2x=5x-3

28. 5\ 90=10+x

29. 6\ 90+20x=30

30. 7\ 691+3x=700

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x2=7;( ) ② ( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

解:3y-y=3+4,2y=7,y= ;( )

②解方程:0.4x-3=0.1x+2

解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )

③解方程

解:5x+15-2x-2=10,3x=-3,x=-1;

④解方程

解:2x-4+5-5x=-1,-3x=-2,x= .( )

二、填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .

(2)关于x的方程ax=3的解是自然数,则整数a的值为: .

(3)方程5x-2(x-1)=17 的解是 .

(4)x=2是方程2x-3=m- 的解,则m= .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .

(6)当y= 时,代数式5y+6与3y-2互为相反数.

(7)当m= 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .

三.选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3( x-1)=12

B.去括号,得x- =3

C.两边同除以 ,得 x-1=4

D.整理,得

(3)方程2- 去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式 比 大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1是方程( )的解.

A.-

B.

C.2{3[4(5x-1)-8]-2}=8

D.4x+ =6x+

四、解下列方程:

(1)7(2x-1)-3(4x-1)=4(3x+2)-1;

(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);

(3) [ ( )-4 ]=x+2;

20%+(1-20%)(320-x)=320×40%

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

五、解答下列各题:

(1)x等于什么数时,代数式 的值相等?

(2)y等于什么数时,代数式 的值比代数式 的值少3?

(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?

(4)解下列关于x的方程:

①ax+b=bx+a;(a≠b);

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后之一次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年之一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配 中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的 来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 910 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果精确到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x≥0时,3x=18,∴x=6

当x0时,-3=18,∴x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、19.解:原方程变形为

200(2-3y)-4.5= -9.5

∴400-600y-4.5=1-100y-9.5

500y=404

∴y=

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

∴21x=63

∴x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形图片的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形图片.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.12×1281=153.72≈154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

24.解:(1)∵103100

∴每张门票按4元收费的总票额为103×4=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数乙班人数

∴甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,∴103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,∴这种情况不存在.

故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)

——合并同类项与移项

【知能点分类训练】

知能点1 合并与移项

1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.

(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:

①由方程 =2去分母,得x-12=10;

②由方程 x= 两边同除以 ,得x=1;

③由方程6x-4=x+4移项,得7x=0;

④由方程2- 两边同乘以6,得12-x-5=3(x+3).

错误变形的个数是( )个.

A.4 B.3 C.2 D.1

3.若式子5x-7与4x+9的值相等,则x的值等于( ).

A.2 B.16 C. D.

4.合并下列式子,把结果写在横线上.

(1)x-2x+4x=__________; (2)5y+3y-4y=_________;

(3)4y-2.5y-3.5y=__________.

5.解下列方程.

(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:

(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.

8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.

知能点2 用一元一次方程分析和解决实际问题

9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.

(1)爸爸追上小明用了多长时间?

(2)追上小明时距离学校有多远?

【综合应用提高】

12.已知y1=2x+8,y2=6-2x.

(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】

14.编写一道应用题,使它满足下列要求:

(1)题意适合一元一次方程 ;

(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】

15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.

(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.

(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:

1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.

(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.

2.B [点拨:方程 x= ,两边同除以 ,得x= )

3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)

4.(1)3x (2)4y (3)-2y

5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .

(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.

(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.

(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,

系数化为1,得y=-3.

6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.

(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,

系数化为1,得x=-10.

7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]

8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]

9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.

解这个方程,得x=7.

答:桶中原有油7千克.

[点拨:还有其他列法]

10.解:设应该从盘A内拿出盐x克,可列出表格:

盘A 盘B

原有盐(克) 50 45

现有盐(克) 50-x 45+x

设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.

解这个方程,得x=2.5,经检验,符合题意.

答:应从盘A内拿出盐2.5克放入到盘B内.

11.解:(1)设爸爸追上小明时,用了x分,由题意,得

180x=80x+80×5,

移项,得100x=400.

系数化为1,得x=4.

所以爸爸追上小明用时4分钟.

(2)180×4=720(米),1000-720=280(米).

所以追上小明时,距离学校还有280米.

12.(1)x=-

[点拨:由题意可列方程2x+8=6-2x,解得x=- ]

(2)x=-

[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]

13.解:∵ x=-2,∴x=-4.

∵方程 x=-2的根比方程5x-2a=0的根大2,

∴方程5x-2a=0的根为-6.

∴5×(-6)-2a=0,∴a=-15.

∴ -15=0.

∴x=-225.

14.本题开放,答案不唯一.

15.解:(1)设CE的长为x千米,依据题意得

1.6+1+x+1=2(3-2×0.5)

解得x=0.4,即CE的长为0.4千米.

(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),

则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);

若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),

则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).

故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

3、初一一元一次方程应用及答案

一元一次方程练习题

基本题型:

一、选择题:

1、下列各式中是一元一次方程的是( )

A. 5a+4b B.4x+9x

C. 5x2+9y2 D. 7a-4b

2、方程3x-2=-5(x-2)的解是( )

A.-1.5 B. 1.5C. 1 D. -1

3、若关于 的方程 的解满足方程 ,则 的值为( )

A. 10 B. 8 C. D.

4、下列根据等式的性质正确的是( )

A. 由 ,得 B. 由 ,得

C. 由 ,得 D. 由 ,得

5、解方程 时,去分母后,正确结果是( )

A. B.

C. C.

6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )

A. 0.81a 元 B. 1.21a元 C. 1.1a元 D.0.1a 元

8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )

A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元

9、下列方程中,是一元一次方程的是( )

(A) (B) (C) (D)

10、方程 的解是( )

(A) (B) (C) (D)

11、已知等式 ,则下列等式中不一定成立的是( )

(A) (B)

(C) (D)

12、方程 的解是 ,则 等于( )

(A) (B) (C) (D)

13、解方程 ,去分母,得( )

(A) (B)

(C) (D)

14、下列方程变形中,正确的是( )

(A)方程 ,移项,得

(B)方程 ,去括号,得

(C)方程 ,未知数系数化为1,得

(D)方程 化成

15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.

(A)3年后; (B)3年前; (C)9年后; (D)不可能.

16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )

(A) (B)

(C) (D)

17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本更低是 元,那么种植草皮至少需用( )

(A) 元; (B) 元; (C) 元; (D) 元.

一年期 二年期 三年期

2.25 2.43 2.70

18、银行教育储蓄的年利率如右下表:

小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益更大,则小明的父母应该采用( )

(A)直接存一个3年期;

(B)先存一个1年期的,1年后将利息和自动转存一个2年期;

(C)先存一个1年期的,1年后将利息和自动转存两个1年期;

(D)先存一个2年期的,2年后将利息和自动转存一个1年期.

二. 填空题:

1、 ,则 ________.

2、已知 ,则 __________.

3、关于 的方程 的解是3,则 的值为________________.

4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.

5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.

6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.

7、当 ___时,代数式 与 的值互为相反数.

8、在公式 中,已知 ,则 ___.

日 一 二 三 四 五 六

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数

,请用一个等式表示 之间的关系______________.

10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.

11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.

12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).

13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.

14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元

15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.

三、解方程:

1、 2、

3、 4、

5、 6、

7、 8、

9、已知 是方程 的根,求代数式 的值.

四、列方程解应用题:

1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?

2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?

3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.

4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?

5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把之一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?

6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?

7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?

8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?

较高要求:

1、已知 ,那么代数式 的值。

2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).

(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%

3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(之一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?

4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.

方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;

(1)你认为选择哪种方案获利最多,为什么?

(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?

5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?

(以上应用题,均无答案·)

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x=7;( ) ②( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

解:3y-y=3+4,2y=7,y=;( )

②解方程:0.4x-3=0.1x+2

解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )

③解方程

解:5x+15-2x-2=10,3x=-3,x=-1;

④解方程

解:2x-4+5-5x=-1,-3x=-2,x=.( )

二、填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .

(2)关于x的方程ax=3的解是自然数,则整数a的值为: .

(3)方程5x-2(x-1)=17 的解是 .

(4)x=2是方程2x-3=m-的解,则m= .

(5)若-2x+1=0 是关于x的一元一次方程,则m= .

(6)当y= 时,代数式5y+6与3y-2互为相反数.

(7)当m= 时,方程的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .

三.选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程(x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3(x-1)=12

B.去括号,得x-=3

C.两边同除以,得x-1=4

D.整理,得

(3)方程2-去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式比大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1是方程( )的解.

A.-

B.

C.2{3[4(5x-1)-8]-2}=8

D.4x+=6x+

四、解下列方程:

(1)7(2x-1)-3(4x-1)=4(3x+2)-1;

(2)(5y+1)+ (1-y)= (9y+1)+ (1-3y);

(3)[()-4]=x+2;

(4)

(5)

(6)

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x2=7;( ) ② ( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

解:3y-y=3+4,2y=7,y= ;( )

②解方程:0.4x-3=0.1x+2

解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )

③解方程

解:5x+15-2x-2=10,3x=-3,x=-1;

④解方程

解:2x-4+5-5x=-1,-3x=-2,x= .( )

二、填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .

(2)关于x的方程ax=3的解是自然数,则整数a的值为: .

(3)方程5x-2(x-1)=17 的解是 .

(4)x=2是方程2x-3=m- 的解,则m= .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .

(6)当y= 时,代数式5y+6与3y-2互为相反数.

(7)当m= 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .

三.选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3( x-1)=12

B.去括号,得x- =3

C.两边同除以 ,得 x-1=4

D.整理,得

(3)方程2- 去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式 比 大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1是方程( )的解.

A.-

B.

C.2{3[4(5x-1)-8]-2}=8

D.4x+ =6x+

四、解下列方程:

(1)7(2x-1)-3(4x-1)=4(3x+2)-1;

(2) (5y+1)+ (1-y)= (9y+1)+ (1-3y);

(3) [ ( )-4 ]=x+2;

20%+(1-20%)(320-x)=320×40%

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

五、解答下列各题:

(1)x等于什么数时,代数式 的值相等?

(2)y等于什么数时,代数式 的值比代数式 的值少3?

(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?

(4)解下列关于x的方程:

3x+6=9x+3;

(85+x)8=8;

78x+8(5+x)=34

4、初一上册数学一元一次方程计算题不要应用,选填空择,100道,快一点

)判断题:

判断下列方程是否是一元一次方程:

①-3x-6x2=7( )

③5x+1-2x=3x-2 ( )

④3y-4=2y+1. ( )

判断下列方程的解法是否正确:

①解方程3y-4=y+3

解:3y-y=3+4,2y=7,y=3.5

②解方程:0.4x-3=0.1x+2

解:0.4x+0.1x=2-3;0.5x=-1,x=-2

③解方程

解:5x+15-2x-2=10,3x=-3,x=-1;

④解方程

解:2x-4+5-5x=-1,-3x=-2,x= .( )

2)填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠_

(2)关于x的方程ax=3的解是自然数,则整数a的值为_

(3)方程5x-2(x-1)=17 的解是_

(4)x=2是方程2x-3=m- 的解,则m=_ .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m=_ .

(6)当y=_ 时,代数式5y+6与3y-2互为相反数.

(7)当m=_ 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为______ .

3)选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3( x-1)=12

B.去括号,得x- =3

C.两边同除以 ,得 x-1=4

D.整理,得

(3)方程2- 去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式 比 大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1.5是方程( )的解.

A.4x+2=2x-(-2-9)

B.2{3[4(5x-1)-8]-2}=8

C.4x+9 =6x+6

4)解答下列各题:

(1)x等于什么数时,代数式 的值相等?

(2)y等于什么数时,代数式 的值比代数式 的值少3?

(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?

(4)解下列关于x的方程:

①ax+b=bx+a;(a≠b);

三.化简、化简求值

化间求值:

1、-9(x-2)-y(x-5)

(1)化简整个式子。

(2)当x=5时,求y的解。

2、5(9+a)×b-5(5+b)×a

(1)化简整个式子。

(2)当a=5/7时,求式子的值。

3、62g+62(g+b)-b

(1)化简整个式子。

(2)当g=5/7时,求b的解。

4、3(x+y)-5(4+x)+2y

(1)化简整个式子。

5、(x+y)(x-y)

(1)化简整个式子。

6、2ab+a×a-b

(1)化简整个式子。

7、5.6x+4(x+y)-y

(1)化简整个式子。

8、6.4(x+2.9)-y+2(x-y)

(1)化简整个式子。

9、(2.5+x)(5.2+y)

(1)化简整个式子。

10、9.77x-(5-a)x+2a

(1)化简整个式子。

把x=-2, y=0.1, a=4, b=1代入下列式子求值

3(x+2)-2(x-3)

5(5+a)×b-5(5+b)×a

62a+62(a+b)-b

3(x+y)-5(4+x)+2y

(x+y)(x-y)

2ab+a×a-b

5.6x+4(x+y)-y

6.4(x+2.9)-y+2(x-y)

(2.5+x)(5.2+y)

9.77x-(5-a)x+2a

5、初一一元一次方程算术题100道不要应用题

1/2+1/6+1/12+x+1/30=1-1/30(要用简便算法巧算的)(答案:1/20)

0.6x+x/10-0.2=6/5(答案:2)

2-(3x/8+1/6÷1/3)=35/24(答案:1/9)

3.5/105=x/33(答案:1.1)

7.5:x=24:12(答案:3.75)这样的行吗?小学六年级的

1/3:x=5:6(答案:0.4)

2x/3-x/5=4.9(答案:10.5)

6.4x-2.4x=3.6(答案:0.9)

23×2.5+2.5x=100(答案:17)(巧算)

1×2×3×4×5×6x=4×5×6×7×8(答案:28/3)(巧算)

8X+4=20

50-3x=20

3(x+2)=8

7X-6=8

5(2x+7)=55

(8-x)(6-2X)=10

9x-8x=19

5X+40=100

36-15x=6

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x2=7;( ) ② ( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

3y-y=3+4,2y=7,y= ;( )

②解方程:0.4x-3=0.1x+2

0.4x+0.1x=2-3;0.5x=-1,x=-2;( )

③解方程

5x+15-2x-2=10,3x=-3,x=-1;

④解方程

2x-4+5-5x=-1,-3x=-2,x= .( )

二、填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .

(2)关于x的方程ax=3的解是自然数,则整数a的值为: .

(3)方程5x-2(x-1)=17 的解是 .

(4)x=2是方程2x-3=m- 的解,则m= .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m= .

(6)当y= 时,代数式5y+6与3y-2互为相反数.

(7)当m= 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为 .

3X+189=521

4Y+119=22

3X189=5

8Z/6=458

3X+77=59

4Y-6985=81

87X13=5

7Z/93=41

15X+863-65X=54

58Y55=27489

7(2x-1)-3(4x-1)=4(3x+2)-1;

(5y+1)+ (1-y)= (9y+1)+ (1-3y);

20%+(1-20%)(320-x)=320×40%

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后之一次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年之一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配 中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

6、这6个方程是一元一次方程吗?

这是初一数学中关于一元一次方程的6道判断题,每道题都很典型。想全部做对,还真有点儿难度,不妨测试一下自己,看看自己能答对几道:

一元一次方程判断题~

在上一篇图文中,我们从5个角度入手,已经详细地讲解了一下一元一次方程概念。如果能把那5个关键点都弄明白了的话,那么关于一元一次方程的概念也应该是了如指掌了。

#学霸学习 #

复习知识点:

在做这6道题之前,我们有必要对一元一次方程概念进行简单的复习。我们知道,概念是判断的唯一标准,如果对概念都是一知半解,似懂非懂的话,那么做起题来就容易掉到坑里面去。

我们对一元一次方程概念里的要点进行简单地总结一下:

1、一元一次方程里只有一个未知数,并且未知数的次数是1

2、一元一次方程是整式方程,也就是说,一元一次方程的等号左右两边都必须是等式,否则的话,那就不是一元一次方程。

3、一元一次方程与代数方程、有理方程、整式方程之间的关系如下图所示:

方程之间的关系图~

解题过程:

对一元一次方程的知识点进行了简单地复习后,我们那解决问题的子弹也就准备得差不多了,那就开始上战场解题呗:

1、x+a-66=188:

我们先看一下等号两边的参与对象,“x+a-66”和“188”这两个对象满足代数式的概念,也满足整式的概念,这是一个含有未知数的等式,显然满足方程的概念,所以这是一个代数方程,也是一个整式方程。

虽然未知数的次数是1,是一次方程,但在这个方程中却出现了2个未知数,显然不符合一元一次方程的概念。

因此,“x+a-66=188”不是一元一次方程!

2、6x3+6=6(x3-x)

这个等式中“=”两边的式子“6x3+6”和“6(x3-x)”满足代数式的概念,也满足整式的概念,同时也是一个含有未知数的等式,是个方程,所以这是一个代数方程,也是一个整式方程。

有的人因为未知数“x"出现了“3”次,所以就直观地判断该方程不是一元一次方程。这样做的话就掉到这道题设计的坑里面了。

正确的做法是,先去掉数学中的结合符号即括号,看看这个整式方程能不能化简,如果能的话就化简,然后根据化简后的结果能不能满足一元一次方程的概念再进行判断。

6x3+6=6(x3-x),去掉结合符号后变为:6x3+6=6x3-6x,然后通过移项、合并同类项,得“6x=-6"。显然这个化简后的结果是满足一元一次方程概念的。

因此,“6x3+6=6(x3-x)”是一元一次方程!

3、100÷x+11=99

这是一个含有未知数的等式,满足方程的概念,是个方程。在等号“="两边的参与对象“100÷x+11”和“99”满足代数式的概念,是个代数方程;因“100÷x+11”这个代数式中字母x出现在了分母上,所以它已经不符合整式的概念了,也就不是整式方程了。既然整式方程都不是,那就更不是一元一次方程了,因为一元一次方程是整式方程。

因此,“100÷x+11=99”不是整式方程!

4、8/x+6=8(1/x-x)

我们说过,判断是不是一元一次方程的正确步骤是,先判断它是不是整式方程,即等号两边是不是整式,如果不是整式的话,那就不用再做其它判断工作了,直接判断不是一元一次方程就OK了。如果是整式方程的话,那么再看能不能化简,能化简的话,在化简后的结果上进行判断。

显然,这是一个代数方程,但因为“8/x”中字母已经出现在分母上了,是个分式,而不是个整式,所以它不是个整式方程,它是代数方程里的分式方程。既然连整式方程都不是,那肯定不是一元一次方程了。

因此,“8/x+6=8(1/x-x)”不是一元一次方程!

5、x=1

首先,它是一个含有未知数的等式,所以它是个方程。方程两边的参与对象符合代数式的概念,所以它是个代数方程。两边也满足整式的概念,所以是整式方程。又是一元一次,符合一元一次方程的概念。

因此,“x=1”是一元一次方程!

6、x^0+x+3=16

这道题比较典型,我们先剖析一下:

首先,它是一个含有未知数“x”的等式无疑,所以它是一个方程。方程两边的参与对象“x^0+x+3”“16”分别是代数式无疑,所以它是一个代数方程。同时,方程两边的对象也满足整式的概念无疑,所以它是一个整式方程。

其实,方程到底是几次方程,是由方程中未知数的更高次来决定的。当有更高次数的未知数出现的时候,那么低次数的未知数的次数就已经失去了用作判断方程次数的意义了。

显然,在这个方程中,未知数的更高次数是“1”,满足一次方程的概念,又是一个未知数“x”满足一元方程的概念。

因此,“x^0+x+3=16”是个一元一次方程!

到这里,我们已经把这6道典型的数学题进行了详细的讲解,下确答案如下图所示:

6道判断题的答案~

知识总结:

做关于一元一次方程的判断题的正确步骤是,要先判断是不是整式方程,在是整式方程的基础上,能化简的一定要化简,最后根据化简的结果进行判断!

虽然只有6道题,看似简单,实则题题典型,每道题都是有坑的,如果概念吃不透,知识点储备量不够的话,那就很容易掉到坑里的。所以说全做对有点儿难度的......

最后,再给大家留一道题,看它是不是一元一次方程,为什么?

x+166

7、初一上册数学一元一次方程试题

自从进入到初一后,对于数学《一元一次方程》这门功课要如何学习呢?接下来不妨和我一起来做份初一上册数学《一元一次方程》试题,希望对各位有帮助!

初一上册数学一元一次方程试题及答案

1.下列方程是一元一次方程的是(D)

A.2x+y=0 B.7x+5=7(x+1)

C.x(x+3)+2=0 D.2x=1

2.小华带x元去买甜点,若全买红豆汤圆,则刚好可买30杯;若全买豆花,则刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出方程为(A)

A.x30=x40+10 B.x40=x30+10

C.x40=x+1030 D.x+1040=x30

3.下列方程中,解为x=-1的是(D)

A.2x=x+1 B.2x-1=0

C.x=2x-1 D.x=2x+1

4.若关于x的方程mxm-2-m+3=0是一元一次方程,则这个方程的解为(A)

A.x=0 B.x=3

C.x=-3 D.x=2

5.下列方程中,解不是x=2的是(B)

A.14x-2=-32 B.3x-5=x

C.12(x-1)=0.5 D.2x+3=7

6.2x-3与9互为相反数,用方程来表示就是(B)

A.2x-3=9 B.2x-3=-9

C.2x+3=9 D.2x+3=-9

7.写出一个一元一次方程,使它的解为-5,未知数的系数为45,则方程为__45x=-4(答案不唯一)__.

8.若关于x的方程-5x1-a+1=6是一元一次方程,则a=__0__.

9.若(a+1)2+|b-2|=0,则a-b=__-3__.

10.检验括号中的数是否为方程的解.

(1)3x-4=8(x=3,x=4);

(2)12y+3=7(y=8,y=4).

【解】 (1)x=4是方程的解,x=3不是方程的解.

(2)y=8是方程的解,y=4不是方程的解.

11.根据条件列方程:

(1)某数的5倍比这个数大3;

(2)某数的相反数比这个数大6;

(3)爸爸和儿子的年龄分别是40岁和13岁,请问:几年后,爸爸的年龄是儿子年龄的2倍?

【解】 (1)设该数为x,由题意,得5x=x+3.

(2)设该数为x,由题意,得-x=x+6.

(3)设经过x年后,爸爸的年龄是儿子年龄的2倍,由题意,得40+x=2(13+x).

12.若关于x的方程mxm+5+m-3=0是一元一次方程,则这个方程的解为(C)

A.x=1 B.x=-1

C.x=-74 D.x=-4

【解】 由题意,得m+5=1,∴m=-4.

∴该方程为-4x-7=0,解得x=-74.故选C.

13.已知关于x的方程ax+b=0,当方程的解是x=0时,a,b应满足的条件是(C)

A.a=0,b=0 B.a=0,b≠0

C.a≠0,b=0 D.a≠0,b≠0

14.有6个班的同学在大会议室里听 报告 ,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x人,会议室里有y条长凳,则下列方程:①x5-8=x6+2;②5(y-8)=6(y+2);③5(y+8)=6(y-2);④x5+8=x6-2.其中正确的是(A)

A.①③ B.②④

C.①② D.③④

15.已知3个连续偶数的和为90,设中间的偶数为x,则可列出方程为__(x-2)+x+(x+2)=90__.

16.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为(A)

A.0 B.2

C.0或2 D.-2

【解】 原方程可化为(m2-1)x2-(m+1)x+2=0.

∵该方程是关于x的一元一次方程,

∴m2-1=0且-(m+1)≠0,

∴m=1,∴|m-1|=0.

故选A.

一元一次方程的知识点

一、方程特点

(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。化简后未知数系数不为0.

(3)该方程中未知数的更高次数是1。

满足以上三点的方程,就是一元一次方程。

二、判断

要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。

变形公式

( , 为常数, 为未知数,且 )

三、求根公式

一元一次方程的标准形式:ax+b=0 (a≠0)

其求根公式为:x=-b/a

一元一次方程只有一个根

一元一次方程解法步骤

一、去分母

做法:在方程两边各项都乘以各分母的最小公倍数;

依据:等式的性质二

二、去括号

一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)

依据:乘法分配律

三、移项

做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)

依据:等式的性质一

四、合并同类项

做法:把方程化成ax=b(a≠0)的形式;

依据:乘法分配律(逆用乘法分配律)

解方程步骤

五、系数化为1

做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

依据:等式的性质二.

初一上册数学一元一次方程试题大家做好了吗?我为大家进一步推荐初一的其他课程视频学习,高分也能轻松拿哦。大家赶快来学习吧!(点击图片直接进入体验学习哦!!!)

以上就是小编为您精心收集整理的“初一一元一次判断题?初一数学一元一次方程单元测试?”的全部内容了,仅供参考,希望能帮助到大家。
标签: